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We perform direct numerical simulations of dynamic equations of decaying gravity
waves on infinite-depth water. Power-law behaviour of the wave action spectrum
and structure functions of the surface elevation is obtained. These power laws agree
with the prediction of the weak turbulence theory. The probability density function
(p.d.f.) of the surface elevation is close to the Gaussian distribution around the mean
value which seems to be consistent with the random phase approximation. However,
the p.d.f. deviates weakly from the Gaussian in the tail region. This deviation is
significant and can be amplified by taking the Laplacian. In addition, intermittency
and breakdown of the weak turbulence theory are discussed.

1. Introduction
Studies on water wave systems that have broad-band energy spectra date back to

the 1960s. Zakharov (1968) showed that the evolution of infinite-depth water waves
is described by canonical equations and derived the so-called Zakharov equation.
Moreover, he derived the nonlinear Schrödinger equation and examined modulational
instability.

While much work has been carried out since then, the random phase approximation
is the most important and useful procedure for statistics of water wave systems. With
this approximation, the Zakharov equation leads to the kinetic equation (Zakharov
& Filonenko 1967),
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where ni = n(ki) is wave action, k is the horizontal wavenumber, dk123 = dk1 dk2 dk3

and T0,1,2,3 is the matrix element. The most important parts of this equation are
the two δ-functions. They show that energy transfer and wave action transfer occur
among the wavenumbers that satisfy the resonant relationship

k + k1 = k2 + k3, (1.2a)

ω(k) + ω(k1) = ω(k2) + ω(k3), (1.2b)

where ω(k) =
√

g|k| (g is the acceleration due to gravity) is the linear dispersion
relation. This kinetic theory is called the weak turbulence theory. Most theoretical
work on the statistics of nonlinear water wave systems (Polnikov 1994) and weather
forecasts (Komen et al. 1994) has been based on the kinetic equation (1.1).

Similarly to the two-dimensional fully developed Navier–Stokes turbulence, the
isotropic infinite-depth water wave system has two invariants, the total energy and
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the total wave action, and is considered to have two quasi-equilibrium stationary
states:

n(k) ∝
{

|k|−4 (energy cascade),

|k|−23/6 (wave action cascade).
(1.3)

In the same way, the structure functions of the displacement of the wave surface, η,
have a power-law behaviour. The pth structure function of the surface increments
over a horizontal distance r is defined as Sp(r) = 〈|η(x + r) − η(x)|p〉, where 〈·〉 means
averaging over horizontal positions x and ensembles. The exponent of the power law,
ζp , where Sp(r) ∝ |r|ζp , is derived as follows:

ζp =

{
3p/4 (energy cascade),

2p/3 (wave action cascade).
(1.4)

While the self-similarity in fully developed Navier–Stokes turbulence can be
determined only by a dimensional analysis, the derivation of the law in water wave
turbulence needs an additional constraint because of the excess of independent
physical quantities. The kinetic equation (1.1) implies that the energy transfer and
the wave action transfer are proportional to the third power of the wave action. This
implication is traditionally used as the constraint. Therefore we shall try to obtain
the self-similarity from the dynamic equations.

Leaving aside the success of the weak turbulence theory, much attention has been
paid to the rich features of wave turbulence that cannot be obtained by the random
phase approximation. Numerical studies on various wave turbulence systems with the
dynamic equations have recently been made actively (e.g. Pushkarev & Zakharov 2000;
Cai & McLaughlin 2000; Zakharov, Vasilyev & Dyachenko 2001; Dias, Guyenne &
Zakharov 2001). Although these features originate from dynamical properties and
the kinetic equation (1.1) cannot describe physical quantities in real space, few direct
numerical simulations have been carried out on the infinite-depth gravity wave system
(e.g. Tanaka 2001).

Onorato et al. (2002) obtained power-law spectra in the infinite-depth gravity wave
system. The difference between their simulation and ours is the angular dependence of
the spectra. They used an initial condition with cosine-squared angular dependence
and we use an initial condition without angular dependence. The reason why we
carried out the numerical simulation of isotropic spectra is to avoid correction for
the spectra due to anisotropy: power laws are predicted not for anisotropic spectra
but for isotropic ones. In fact, based on the kinetic equation (1.1), Polnikov (2001)
numerically showed that the stationary spectra for the energy cascade deviate from
the power-law behaviour predicted by the weak turbulence theory due to anisotropic
forcing, while those for the wave action cascade do not.

In this paper, we perform direct numerical simulations for decaying infinite-depth
water wave turbulence driven by an energy cascade and investigate the statistics of
the wave field. The dynamic equations governing the gravity waves and the method
of numerical simulation are explained in § 2. Numerical results are given in § 3. In
addition, the validity of the weak turbulence theory and its breakdown are discussed
in § 4.

2. The method of direct numerical simulation
In this paper we deal with three-dimensional gravity waves on infinite-depth water.

When the motion is irrotational, inviscid and incompressible, it is described by
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four equations: Laplace’s equation with respect to the velocity potential φ(x, z), the
kinematic and dynamic boundary conditions at the free surface z = η(x), and the
boundary condition at the bottom. These are expressed as follows:

∇2φ(x, z) = 0 for − ∞ < z < η(x),

∂η(x)

∂t
+ (∇⊥φ(x, z)) · (∇⊥η(x)) − ∂φ(x, z)

∂z
= 0 on z = η(x),

∂φ(x, z)

∂t
+ 1

2
(∇φ(x, z))2 + gz = p on z = η(x),

∂φ(x, z)

∂z
→ 0 as z → −∞,


(2.1)

where ∇2 is the Laplacian and ∇⊥ = (∂/∂x, ∂/∂y) is the horizontal gradient operator,
p is the atmospheric pressure, and the density of water is normalized to unity. From
now on, g is normalized to unity and p is set to be zero.

In terms of the surface elevation η(x) and the surface potential φs(x) = φ(x, η(x))
we can rewrite these equations as deterministic equations up to the order of four-wave
interactions:
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where L is the period length and η̂i = η̂(ki)=L−1
∫

dxη(x) exp(−iki · x). Equations (2.2)
are completely equivalent to (4.8), (4.9) in Krasitskii (1994) up to the order of the four-
wave interactions. The advantage of using (2.2) in our numerical computation is that
these equations are suitable for spectral methods using the fast Fourier transforms.

The transformation from (2.1) to (2.2) means that the three-dimensional free boun-
dary problem is reduced to a two-dimensional boundary problem which is truncated
up to the order of four-wave interactions. The truncation is commonly used but is
not always acceptable since it is possible that higher-order nonlinear terms can be
larger than linear or lower-order nonlinear terms. This is discussed further in § 4.

Now we introduce complex amplitude variable b(k) as

b(k) =

√
ω(k)

2|k| η̂(k) + i

√
|k|

2ω(k)
φ̂s(k). (2.3)

In addition we add dissipation term −D(|k|)b(k) to (2.2). Of course, this term is
artificial but it is assumed that the term does not affect the dynamics in the inertial
range. Then (2.2) are rewritten in one complex-variable differential-integral equation
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as

∂b(k)

∂t
= −iω(k)b(k) + N(b(k)) − D(|k|)b(k), (2.4)

where the nonlinear term N(b(k)) consisting of many integrals comes from the
nonlinear terms of (2.2). For the dissipation term, we used the form of D(|k|) = ν|k|nD,

where nD = 16 and ν ∼ 6.58 × 10−24.
We used the modified JONSWAP spectrum without directional dependence as the

initial condition of the energy spectrum. The initial condition we employed was

|b(k)|2 = C|k|−9/2 exp

(
− 5

4|k|2

)
γ exp(−(|k|−kP)2/(2σ 2)) exp

(
−

(
|k|
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)2)
, (2.5)

where C is chosen to determine linear energy density HL =
∫

dkω(k)|b(k)|2, the peak
wavenumber kP is set to be unity, γ =3.3, and

σ =

{
0.07 for |k| < kP,

0.09 for |k| � kP.
(2.6)

The extra term, exp(−(|k|/kcutoff)2), is the cutoff at large wavenumbers to avoid initial
instability and we used kcutoff = 2. The initial phases of the b(k) are given by random
numbers homogeneously distributed in [0, 2π).

With the characteristic wave amplitude Ac ∼ 2
√

HL, the mean slope of waves ε,
which is one of the parameters indicating the strength of the nonlinear interaction,
is estimated as kPAc. If HL is too large, waves collapse everywhere and the system is
not the weak turbulence regime. On the other hand, if HL is too small, the numerical
simulations are time-consuming. Therefore we must choose an appropriate HL, and
here set HL to 5.0 × 10−3.

We carried out this calculation with 20482 effective mesh points, which requires
40962-grid-point fast Fourier transforms since we employed the so-called ‘3/2 method’
for de-aliasing. We integrated (2.4) by the fourth-order Runge–Kutta method with the
time step �t = TP/100; TP is the period of the peak wavenumber kP and is normalized
to 2π. However, below 1000TP we used �t = TP/50 to save computation time.

The computational domain is a doubly periodic square whose edge is 32 times
as large as the wavelength of the peak wavenumber, and the wavenumbers are
discretized as k = (m/32, n/32) (−1023 � m, n � 1023).

At first, we expected the minimum wavenumber, 1/32 here, to be important to
collect a large number of combinations of resonant quartets in numerical simulations
and that we should make it as small as possible. The discretization is believed to cause
frozen turbulence, in which low-wavenumber modes exchange energy without net
energy transfer. In fact, Kartashova (1998) showed analytically, and Pushkarev &
Zakharov (2000) numerically, that the discretization causes frozen turbulence on
capillary waves, where the net energy transfer occurs among resonant trios. However,
for resonant quartets it has recently been found that the minimum wavenumber is
not important unless we are interested in extremely small wavenumbers. It is proved
that many quartets, apart from trivial ones which do not contribute to the net energy
transfer such as k = k2 and k1 = k3, exactly satisfy the four-wave resonant condition
(1.2) even in a sparsely discretized domain with a rectangular grid (Tanaka &
Yokoyama 2004) irrespective of the degrees of freedom. Namely, the resonance
among even-numbered waves is completely different from that among odd-numbered
waves.
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Figure 1. One-dimensional wave action spectrum. The inset shows the compensated spectrum

k3Ñ (k) at t = 2000TP. Both figures show that the spectrum has power-law behaviour quite close
to −3, which is consistent with the prediction of the weak turbulence theory.

On the other hand, we should carefully choose the largest wavenumber, e.g. 1023/32
here, because large-wavenumber modes can make numerical simulations break down
through collapsing waves, which is discussed in detail in § 4.

3. Results
First, we define the wave action spectrum as N (k) = |b(k)|2 in this paper. Although

N (k) is not exactly the same as n(k), we can use N (k) in place of n(k) since the
difference is negligible. We will discuss further in § 4. Moreover, in the discussion of

the spectrum we use the directionally integrated spectrum, Ñ (k) =
∫

dθkN(k), where
k = |k| and θ is the angle between k and the kx-axis. We study the statistics at around
t = 2000TP when the energy dissipation rate, P = D(k)ω(k)|b(k)|2, takes the maximum
value, because the wave field at that time is fully developed. The maximum energy
dissipation rate is approximately 10−8 and only 1.3% of the total wave action has
been dissipated by t = 2000TP.

Figure 1 shows the evolution of the directionally integrated wave action spectrum.
At t = 2000TP, it shows a clear power law in the range 1.7 � k � 7 and its exponent
obtained by the least-square method is −3.01 ± 0.01. The inset shows the compensated

spectrum k3Ñ (k). It also shows a plateau from k =1.7 to k = 7. The figures show that
the power law is quite close to k−3, which corresponds to the energy cascade from
long waves to short waves predicted by the weak turbulence theory. It is noted that
the directional integration adds one to the power-law exponents. Simultaneously, for
small wavenumbers in the range k � 0.25 we can see another power-law behaviour.
We consider that this shows the equipartition caused by the finite domain of this
numerical simulation.
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Figure 2. (a) pth-order structure functions of surface increments, Sp(r). Curves are for
p = 1, 2, 3, . . . , 8 from top to bottom. (b) Scaling exponents of the structure functions, ζp , at
t = 2000TP. The solid line is the prediction of the weak turbulence theory. The scaling exponents
are obtained by extended self-similarity fitted in the range 2π/7 � r � 2π/1.7, indicated by the
vertical lines in (a) and in the inset of (b). The error bars for the scaling exponents are
much smaller than the point size. The inset of (b) shows the compensated structure functions
Sp(r)/S2(r)

βp except p = 2. Curves are for p =1, 3, 4, . . . , 8 from bottom to top.

Because of isotropy, two-point displacements in structure functions, r , can be
replaced by the modulus r . Figure 2 plots structure functions, Sp(r), and their
scaling exponents, ζp , up to the eighth order. Each function is averaged over four
directions at t = 2000TP and all the exponents are obtained by the generalized scaling
method called ‘extended self-similarity’ in research on fully developed Navier–Stokes
turbulence (Benzi et al. 1996). In this paper, we plot ζp = 3βp/2, where βp is the
power-law exponent of Sp(r) as functions of S2(r), that is Sp(r) ∝ S2(r)

βp . Fitting is
done in the range 2π/7 � r � 2π/1.7, which corresponds with the power-law region
of the wave action spectrum. We assumed ζ2 = 3/2 which is predicted by the weak
turbulence theory because weak turbulence does not have exponents that can be
derived analytically such as the Kolmogorov’s four-fifth law in fully developed Navier–
Stokes turbulence (Kolmogorov 1941) at this moment. While at small p the scaling
exponents agree with the 3p/4 that the weak turbulence theory predicts, at large p

they deviate slightly downward from the prediction of the weak turbulence theory.
However, the deviation in this system is much smaller than that in fully developed
Navier–Stokes turbulence.

These power laws obtained by the direct numerical simulation show the success of
the weak turbulence theory: the breakdown of the theory is quite weak. However, the
deviation from the theory can be seen more distinctly in p.d.f.s of η and ∇2

⊥η. Figure 3
shows p.d.f.s taken with the wave fields at ten times extracted every 12.5TP from
t = 1937.5TP to t =2050TP and normalized by the corresponding standard deviation.

The p.d.f. of η is close to the Gaussian distribution around the mean value and
differs from it in the tail region. Its skewness and kurtosis are 1.45 × 10−1 and 3.12,
respectively. The positive skewness is qualitatively described by Stokes waves that
have steep tops and flat bottoms. The p.d.f. of ∇2

⊥η represents the characteristics of the
large wavenumbers and it displays the vertical asymmetry of the waves more clearly.
The two-dimensional Laplacian ∇2

⊥ enlarges the small non-Gaussianity seen on the
p.d.f. of η. It is greatly distorted from the Gaussian distribution, and its skewness and
kurtosis are −7.92 × 10−1 and 4.92, respectively. In particular, it has an exponential
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Figure 3. P.d.f.s of η and ∇2
⊥η. The p.d.f. of η differs marginally from the Gaussian distribution

and that of ∇2
⊥η is greatly distorted from the Gaussian distribution. The deviation from the

Gaussian distribution is qualitatively described by a Stokes waves picture.

tail at negative values of ∇2
⊥η. This relatively large probability at negative values of

∇2
⊥η and small probability at positive values of ∇2

⊥η is also consistent with the picture
of Stokes waves. In other words, the wave field consists of randomly distributed
waves accompanied by bound waves like Stokes waves.

4. Discussion
With canonical variables c(k) obtained by canonical transformation from b(k)

(Krasitskii 1994), the dynamic equations (2.2) are rewritten as

∂c(k)

∂t
= −iω(k)c(k) − i

∫
dk123δ

k
0+1−2−3T0,1,2,3c

∗(k1)c(k2)c(k3). (4.1)

This equation has no three-wave interaction terms. The weak turbulence theory is
applied not to b(k) but to c(k) and wave action should be defined as n(k) = 〈|c(k)|2〉.
Transformation between b(k) and c(k) is impossible though, even numerically, because
the transformation needs many convolutions to be calculated. However, the difference
is of the order of the square of the wave action and appears only in large-wavenumber
regions (see also Krasitskii 1994). Therefore we can regard the difference between
b(k) and c(k) as sufficiently small in our numerical simulations.

Milder (1990) states that the truncation of the Hamiltonian to finite orders causes
higher-order imperfections and that the unstable wavenumber decreases in proportion
to the surface slope. However, the truncation contains more sensitive problems. We
expand exp(|k|z) into 1 + |k|z + (|k|z)2/2 + · · · at the water surface. In this process we
implicitly assume that higher-order terms are much smaller than lower-order terms,
that is, |b(k1)| � |b(k2)b(k3)| � |b(k4)b(k5)b(k6)| � · · · for arbitrary combinations of
the ki . In fact, this assumption does not always hold because of the power-law
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Figure 4. A collapsing wave 0.01TP before the breakdown of the computation. The height of
the collapsing wave located in the centre of the figure is approximately six times as large as
the standard deviation for the surface elevation. The arrow shows the wavelength of the peak
wavenumber and (1/8)2 of the whole computational domain is shown.

nature of the spectrum. Here the locality of interactions is required. The locality
of interactions means that energy is transferred among the wavenumbers of which
norms and wave action are of the same order. The locality that is also assumed by
cascading models has not been clarified yet in spite of its importance.

We carried out another simulation with higher resolution in space, where the largest
wavenumber is 2047/32. The time steps �t are variable. The coefficient of the dis-
sipation term ν is 8.04 × 10−28, which is determined so that the dissipation rate of the
wave action at the largest wavenumbers has the same value as that in the previous

simulation assuming Ñ (k) ∝ k−3. The energy dissipation rate P is larger in this simu-
lation than that in the previous one. Other parameters are set to the same value
as in the previous simulation. Despite the larger energy dissipation rate than in the
previous simulation, the numerical computation breaks down. This indicates that
mechanisms of wave interactions that do not contribute to the energy cascade are
dominant in the large-wavenumber region. Figure 4 displays the wave field just before
the breakdown of the computation, when a local point-like collapse appears. It is
probably inappropriate to apply the expansion of exp(|k|z) and the truncation of the
Hamiltonian to wave fields with large |k|z such as collapses. Hence, high-resolution
simulations are necessary to clarify the behaviour of these collapsing waves in a
system including the higher-order terms or in a three-dimensional free surface system
without truncation.

Newell, Nazarenko & Biven (2001) showed that intermittent phenomena that
originate in coherent structures like whitecaps occur and the weak turbulence
theory is violated at large wavenumbers. If we apply their theory to our numerical
computation, the intermittent phenomena occur around k ∼ 105. Nevertheless, we
found strong dynamical structures such as collapses in our simulation in which the
largest wavenumber is only 2047/32 ∼ 64. The difference is that their estimation
is based on the kinetic equation (1.1) derived via the weak turbulence theory and
our simulation is based on the dynamic equations (2.4). Namely, breakdown of the
weak turbulence theory occurs at relatively small wavenumbers, although the overall
statistics for the wave field with a limited inertial range is described by the theory.
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Intermittency in this system, which is deviation from the prediction of the weak
turbulence theory, consists of two types. One is the characteristics of the bound waves
and the other comes from the dynamical structures localized in time and space of huge
waves such as collapsing waves. The former is seen everywhere in the wave field and its
effect is not large. On the other hand, the latter is spatio-temporal intermittency and
is rarely seen in statistics, unlike fully developed Navier–Stokes turbulence. However,
this spatio-temporal intermittency, which is linked to discontinuity in mathematics
and freak waves in oceanography, has extremely serious effects on the wave field.
Janssen (2003) studied large-scale freak waves induced by the sideband instability in
the narrow-band system governed by the nonlinear Schrödinger equation. We will
clarify the relation between large waves caused by the sideband instability and the
spatio-temporal intermittency in the broad-band water wave system in future work.

5. Conclusion
In this paper, we perform direct numerical simulations of gravity waves on infinite-

depth water. This calculation is based on the dynamic equations without any statistical
approximations instead of the kinetic equation derived with the random phase
approximation.

We reproduced the power-law behaviour of the wave action spectrum for an
isotropic initial spectrum. We also obtained the power-law range of the structure
functions of the displacement of the wave surface elevation. These power laws agree
quite well with the prediction of the weak turbulence theory and indicate the success
of the theory. In addition, we show that p.d.f.s of the wave field are skewed by bound
waves.

However, we found evidence of rare events such as collapsing waves that are the
origin of spatio-temporal intermittency and outside the concept of weak turbulence
theory. Intermittency in this system comes from the dynamical mechanism and thus
it is qualitatively different from that in the fully developed turbulence described
by the Navier–Stokes equation. From both practical and mathematical viewpoints
investigation of these spatio-temporal intermittent structures is important.
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encouragement and valuable discussion. This work is partially supported by the
Grand-Aid for Scientific Research from the Ministry of Education, Culture, Sports
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